Error Bounds of Continued Fractions for Complex Transport Coefficients and Spectral Functions
نویسنده
چکیده
We study the calculation of complex transport coeffi cients x ( (o) and power spectra in terms of complex con tinued fractions. In particular, we establish classes of dynamical equilibrium and non-equilibrium systems for which we can obtain a posteriori bounds for the truncation error | ^ (to) — x(n)(c'J)| = c (a)) I X(w)(tu) — %(”-1)(w)| when the transport coefficient is approximated by its n-th con tinued fraction approximant £<n)(co).
منابع مشابه
Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملOn the computing time of the continued fractions method
Algorithms for polynomial real root isolation are ubiquitous in computational real algebraic geometry but few lower bounds are known for their maximum computing time functions. One exception is the continued fractions method due to Vincent (1836) and recommended by Uspensky (1948). Collins and Akritas (1976) proved that the maximum computing time of the method is at least exponential in the len...
متن کاملIdentification of Initial Taylor-Maclaurin Coefficients for Generalized Subclasses of Bi-Univalent Functions
In the present work, the author determines some coefficient bounds for functions in a new class of analytic and bi-univalent functions, which are introduced by using of polylogarithmic functions. The presented results in this paper one the generalization of the recent works of Srivastava et al. [26], Frasin and Aouf [13] and Siregar and Darus [25].
متن کاملCoefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers
In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers. Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013